

Automated Wizard® MagneSil® Plasmid DNA Purification System Protocol

Automated Protocol #EP001

DESCRIPTION OF THE LABORATORY ROBOTICS METHODS WITH PRODUCTS A1630, A1631 AND A1635. PLEASE DISCARD PREVIOUS VERSIONS.

All technical literature is available on the Internet at www.promega.com
Please visit the web site to verify that you are using the most current version of this Automated Protocol.

I.	Description1
II.	Product Components2
III.	Before You Begin
IV.	Automated Processing Requirements for the Biomek® 2000 Workstation3 A. Instrumentation Requirements for the Biomek® 2000
V.	Automated Processing Requirements for the Biomek® FX Workstation
VI.	Automated Processing Requirements for the Tecan Genesis® RSP150 Workstation
VII.	Description of the Automated Wizard® MagneSil® Plasmid DNA Purification System9
/III.	General Guidelines for Adaptation to Alternative Robotic Platforms10

I. Description

This document describes automation of the Wizard® MagneSil® Plasmid DNA Purification System^(a,b). Specific instructions are provided for the Beckman Coulter Biomek® 2000, Biomek® FX and Tecan Genesis® RSP150 automated liquid-handling workstations. Information on obtaining validated methods for these workstations is available at: www.promega.com/automethods/ General automation guidelines are provided for adaptation to other liquid-handling platforms in Section VIII. For troubleshooting chemistry issues, please refer to the Wizard® MagneSil® Plasmid DNA Purification System Technical Bulletin #TB286.

Note: All Promega Technical Bulletins are available at: www.promega.com/tbs/

II. Product Components

Product	Size	Cat.#
Wizard® MagneSil® Plasmid DNA Purification System	4 × 96 preps	A1630
Each system contains sufficient reagents for 4 × 96 isolations.		

Includes:

• 50ml Cell Resuspension Solution

• 60ml Cell Lysis Solution

60ml Neutralization Solution

19ml MagneSil® BLUE

• 30ml MagneSil® RED

• 50ml Elution Buffer

16 Collection Plates

• 1 Protocol

Product	Size	Cat.#
Wizard® MagneSil® Plasmid DNA Purification System	8 × 96 preps	A1631
Each system contains sufficient reagents for 8 x 96 isolations.		

Includes:

90ml Cell Resuspension Solution

• 125ml Cell Lysis Solution

120ml Neutralization Solution

38ml MagneSil® BLUE

60ml MagneSil® RED

100ml Elution Buffer

32 Collection Plates

1 Protocol

Product	Size	Cat.#
Wizard® MagneSil® Plasmid DNA Purification System	100 × 96 preps	A1635
Each system contains sufficient reagents for 100 x 96 isolation	ns.	

Includes:

• 3 × 500ml Cell Resuspension Solution

• 3 × 500ml Cell Lysis Solution

• 3 x 500ml Neutralization Solution

• 5 × 100ml MagneSil® BLUE

• 7 x 100ml MagneSil® RED

• 3 × 500ml Elution Buffer

• 100 Collection Plates

• 1 Protocol

Items Available Separately

Product	Size	Cat.#
MagneSil® BLUE	100ml	A2201
MagneSil® RED	100ml	A1641
Cell Resuspension Solution	500ml	A7114
Cell Lysis Solution	500ml	A7124
Neutralization Solution	500ml	A7132

Storage Conditions: Store all Wizard® MagneSil® Plasmid DNA Purification System components at 22–25°C.

Do not freeze
the MagneSil®
Paramagnetic Particles.

III. Before You Begin

Materials to Be Supplied by the User

- culture medium containing appropriate antibiotic
- tabletop centrifuge capable of 1,500 × g, fitted with 96-well plate adapters (e.g., tabletop model or Beckman Coulter J2HC, Cat.# 362701)
- deep-well (2ml) 96-well plate (e.g., Beckman Coulter deep square-well plate, Cat.# 140504, or equivalent)
- 80% ethanol
- 1 plate sealer

Preparation of Cell Pellets

Pellet the bacterial culture grown in a 2ml deep-well culture plate with square wells (e.g., Beckman Coulter deep-well titer plate, Cat.# 267007) by centrifugation for 15 minutes at $1,500 \times g$ in a tabletop centrifuge. Cells should contain high-copy-number plasmids. For additional information on choosing a bacterial strain, see the $Wizard^{\otimes}$ $MagneSil^{\otimes}$ Plasmid DNA Purification System Technical Bulletin #TB286. As much as 6.0 O.D._{600} of total cell mass may be processed per well. Pour off the supernatant and blot the plate upside down on a paper towel to remove excess liquid. Place this sample plate containing the cell pellets on the deck of the workstation for processing.

IV. Automated Processing Requirements for the Biomek® 2000 Workstation

This section lists the instrument and labware requirements for the plasmid DNA purification method using the Wizard® MagneSil® Plasmid DNA Purification System on the Biomek® 2000. For specific instrument and labware requirements or multiplate MagneSil® plasmid purification please inquire with Promega Technical Services or visit www.promega.com/automethods/

A. Instrumentation Requirements for the Biomek® 2000

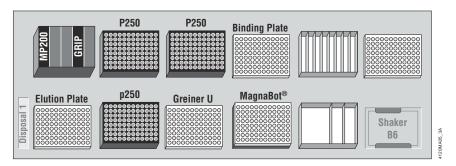
The following is a list of Beckman Coulter parts and their corresponding part numbers that are required for plasmid DNA purification using the Wizard® MagneSil® Plasmid DNA Purification System on a Biomek® 2000.

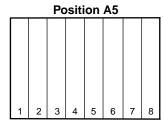
Part Description	Quantity	Beckman Could Part Numb
Biomek® 2000 Workstation,		
50/60Hz, 100–120V	1	6090
Biomek® 2000 Controller NT	1	6098
IBM® Monitor	1	9745
BioWorks™ 3.2 for Beckman Coulter Computer	1	6099
Biomek® 2000 Left Side Module	1	6090
Gripper Tool System for Biomek® 2000	1	6090
MP200 Pipetting Tool	1	6090
Tip Rack Holder	3	6091
Gray Labware Holder	7	6091
Reservoir Holder	2	3727
Single Half Module Reservoir	1	3727
Quarter Vertical Reservoir	4	3727
Beckman Coulter DPC MicroMix® 5 Shaker	1	3805
Beckman Coulter DPC MicroMix® 5		
Shaker Integration Kit	1	3805

B. Labware Requirements for the Biomek® 2000

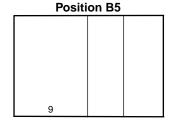
Ordering Information
Promega Cat.# V8151
Provided in Wizard® MagneSil®
Plasmid DNA Purification System
Beckman Coulter Part# 140504

C. Biomek® 2000 Initial Deck Configuration




Figure 1. Biomek® 2000 initial deck configuration.

Tool rack containing MP200 and Gripper tools
Tip rack holder, P250 tips
Tip rack holder, P250 tips
Labware holder, empty 96-well collection plate ("Binding Plate")
Reservoir with reagents (see Figure 2 for configuration)
Shaker position, 96-well square deep-well culture plate containing
bacterial cell pellets prepared in Section III.
Labware holder, empty 96-well collection plate
Tip rack holder, P250 tips
Labware holder, empty 96-well collection plate
MagnaBot® 96 Magnetic Separation Device with an empty 96-well
collection plate sitting on top
Reservoir with reagents (see Figure 2 for configuration)
Empty shaker position



D. Biomek® 2000 Reagent Dispense Volumes

Prior to beginning run, dispense Wizard® MagneSil® Plasmid DNA Purification System reagents according to the following configuration:

- 1. 3ml MagneSil® RED
- 2. 3ml MagneSil® RED
- 3. 1.7ml MagneSil® BLUE
- 4. 1.7ml MagneSil® BLUE
- 5. 12ml Elution Buffer
- 6. 15ml Neutralization Solution
- 7. 15ml Cell Lysis Solution
- 8. 12ml Cell Resuspension Solution

9. 50ml 80% Ethanol (EtOH)

Figure 2. Contents of the reagent reservoirs for the Automated Wizard® MagneSil® Plasmid DNA Purification System protocol.

E. Biomek® 2000 Specific Pre-Run Recommendations

Automated processing on the Biomek® 2000 Workstation requires integration of the DPC MicroMix® 5 Shaker. This shaker and its integration kit are available from Beckman Coulter. For more information on integration of the DPC MicroMix® 5 Shaker on the Biomek® 2000 Workstation, follow these instructions: www.promega.com/automethods/beckman/biomek2000/default.asp

Before running the method, it will need to be imported into the BioWorks[™] Software. Please follow the instructions for importing Biomek[®] 2000 Methods: www.promega.com/automethods/beckman/biomek2000/default.asp

V. Automated Processing Requirements for the Biomek® FX Workstation

A. Instrumentation Requirements for the Biomek® FX

		Beckman Coulter
Part Description	Quantity	y Part Number
Minimum: Biomek® FX		
Software version 2.1	1	Contact Beckman
96-channel POD	1	Contact Beckman
Minimum number of Labware		
Positions by 1 POD	13	Contact Beckman
Tip Loader	1	Contact Beckman
Linear Shaker ALP	1	Contact Beckman
MagnaBot® 96 Magnetic Separation Device	1 F	Promega Cat.# V8151

B. Labware Requirements for the Biomek® FX

Part Number
Provided in Wizard® MagneSil®
Plasmid DNA Purification Kit
267007

C. Biomek® FX Initial Deck Configuration

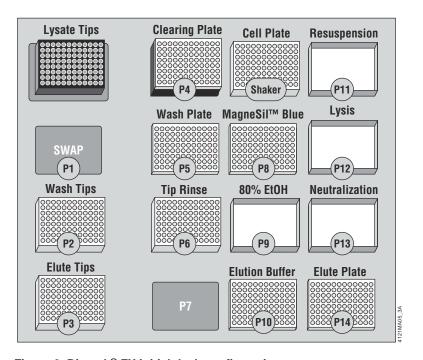


Figure 3. Biomek® FX initial deck configuration.

ALP Name	Equipment
Tip Loader	200µl non-ART Biomek® FX tips
P1	Swap spot
P2	200µl non-ART Biomek® FX tips
P3	200µl non-ART Biomek® FX tips
P4	MagnaBot® Separation Device with a Greiner 96-well U-bottom plate on top
P5	Greiner 96-well U-bottom plate containing 50µl MagneSil® RED per well
P6	96-well square deep-well plate filled completely with deionized water
P7	Empty
Shaker	96-well square deep-well plate containing bacterial cell pellet sample
P8	Greiner 96-well U-bottom plate containing 40µl MagneSil® BLUE per well
P9	Upside-down tip box lid containing 80% ethanol
P10	Greiner 96-well U-bottom plate containing 125µl Elution Buffer per well
P11	Upside-down tip box lid containing 40ml Cell Resuspension Solution
P12	Upside-down tip box lid containing 40ml Cell Lysis Solution
P13	Upside-down tip box lid containing 40ml Neutralization Solution
P14	Greiner 96-well U-bottom plate used for elution

D. Biomek® FX Specific Pre-Run Recommendations

The Biomek® FX automated platform allows users the flexibility to configure the robot's deck according to need. Because of this flexibility, it is likely that the deck used for writing a Biomek® FX method will differ from an end-user's deck. Therefore, it will be generally necessary to map an imported method onto an end-user's deck configuration. Follow the

instructions provided: Biomek® FX Deck Mapping

www.promega.com/automethods/beckman/biomekfx/default.asp

VI. Automated Processing Requirements for the Tecan Genesis® RSP150 Workstation

A. Instrumentation Requirements for the Genesis® RSP150

Quantity	Ordering Information
4	
<u> </u>	Contact Tecan
8	Contact Tecan
8	612530
3	61-449
1	70-744
1	Contact Tecan
1	Contact Tecan
2	61-418
	8 3 1 1

B. Labware Requirements for the Genesis® RSP150

Part Description	Quantity	Ordering Information
•		Promega
MagnaBot® 96 Magnetic Separation Device	1	Cat.# V8151
		Promega
MagnaBot® Adapter T1	1	Cat.# V8481
		Marsh
2ml deep-well plate (or comparable)	1	Cat.# AB-0932
		Provided in Wizard®
		MagneSil® Plasmid
Polystyrene U-bottom multiwell plate	4	DNA Purification Kit

C. Genesis® RSP150 Initial Workspace Configuration

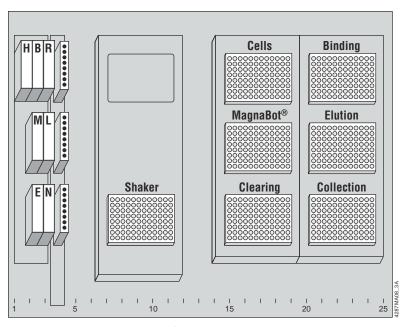


Figure 4. Tecan Genesis® RSP150 initial workspace configuration.

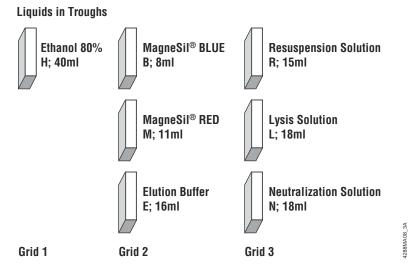


Figure 5. Placement of liquids and reagents in containers.

Setting up the Workspace

Carriers, racks and containers are placed on the Genesis® RSP150 workspace as shown in Figures 4 and 5:

Grid			Labware
Number	Instrumentation	Labware	Position
1	100ml trough carrier	100ml trough	Rear
2	100ml trough carrier	100ml trough	Rear
		100ml trough	Middle
		100ml trough	Front
3	100ml trough carrier	100ml trough	Rear
		100ml trough	Middle
		100ml trough	Front
4	Wash Station		
6	Te-Shake	96-well microplate	Front
13	Microplate carrier	Culture plate	Rear
		MagnaBot [®] on	
		MagnaBot® Adaptor T1	Middle
		Microplate for Clearing	Front
19	Microplate carrier	Microplate for Binding	Rear
		Microplate for Elution	Middle
		Microplate for Collection	Front

D. Genesis® RSP150 Specific Pre-Run Recommendations

Due to differences in instrument reference positions, carriers, plate types and Te-Shake configurations, it is recommended to check and adjust the following settings prior to running the method:

- X,Y,Z coordinates for each plate and carrier type used in the method
- b. RoMa vectors
- Te-Shake: Orbit = 3mm; Counterweight = none

VII. Description of the Automated Wizard® MagneSil® Plasmid DNA **Purification System**

This overview describes the general liquid-handling steps required for the Automated Wizard® MagneSil® Plasmid DNA Purification System and can be adapted to a variety of automated liquid-handling robots. For additional information for adaptation to liquid-handling robots other than those referenced above, please see Section VIII, General Guidelines for Adaptation to Alternative Robotic Platforms.

- 1. **Cell Resuspension.** 90µl of Cell Resuspension Solution is added to each well of the deep-well culture plate. The cells are resuspended by thorough tip mixing, then shaken for 2.5 minutes to ensure the cell pellets are well resuspended.
- 2. Cell Lysis. 120µl of Cell Lysis Solution is added to each well of the deepwell culture plate and shaken for 3 minutes to mix.
- 3. Cell Lysate Neutralization. 120µl of Neutralization Solution is added to each well of the deep-well culture plate and shaken for 2 minutes to mix. A flat, floating precipitate should form in each well.
- 4. Preparation for Cell Lysate Clearing. The lysate clearing process begins with a transfer of 25µl of MagneSil® BLUE to each well of the cell culture

- plate and pipetting up and down to mix the MagneSil® BLUE and cell lysate. The deep-well culture plate then shakes for 1 minute to mix.
- 5. **Cell Lysate Clearing.** 300µl of cell lysate is transferred from the deep-well culture plate to a working plate (Greiner U-bottom 96-well plate). The cell lysate is then cleared by placing the 96-well plate onto the MagnaBot® for 90 seconds. This allows the bound lysate/cell debris to remain localized on the magnet, while 240µl of supernatant containing plasmid DNA is removed and transferred to a U-bottom 96-well plate containing 50µl of MagneSil® RED.
- 6. **DNA Binding.** The MagneSil® RED and sample are mixed well by pipet-tip mixing. The 96-well plate is then placed on the MagnaBot® to capture the particles containing plasmid DNA. The supernatant is removed to waste.
- 7. **Washing.** The MagneSil® RED particles are washed 3 times with 100µl of 80% EtOH. During each wash, the particles are mixed by shaking for 1 minute. The particles are captured on the MagnaBot®, and the supernatant is removed to waste.
- 8. **Drying and Elution.** Following the last EtOH wash, the particles are airdried for 10 minutes. Heat-drying may be performed, which will shorten this incubation time. Following the drying step, the plasmid DNA is eluted from the particles by adding 100µl of Elution Buffer and mixing well by pipetting. The particles are then captured on the MagnaBot[®], and the supernatant is saved in a clean 96-well multiwell plate.
- 9. **Method Completion.** Purified plasmid DNA is contained in the 96-well multiwell elution plate.

VIII. General Guidelines for Adaptation to Alternative Robotic Platforms

Following the final ethanol removal, it is critical to pause and allow the plate to dry to remove all possible residual ethanol. Carryover of ethanol in eluted purified products may inhibit downstream applications. If carryover of ethanol in eluted purified DNA is a problem, integration of a heating step during drying will improve evaporation of ethanol.

The MagneSil® BLUE and RED paramagnetic particles used for this purification settle rapidly. Ensure that the MagneSil® Paramagnetic Particles are completely resuspended in the bottle before dispensing into processing plates. When pipetting MagneSil® Paramagnetic Particles, reduce aspiration speeds from maximum settings to prevent aspiration of the particles up into liquid handling instrumentation.

Integrated shakers may differ between automated liquid-handling systems. MagneSil® Paramagnetic Particles should be mixed so that the particles are thoroughly resuspended in solution during the purification process for optimal performance. Take care that shaker settings are not so vigorous to cause splashing of the MagneSil® Paramagnetic Particles between wells, therefore causing crosscontamination of samples.

(a)U.S. Pat. Nos. 6,027,945 and 6,368,800, Australian Pat. No. 732756 and Japanese Pat. No. 3253638 have been issued to Promega Corporation for methods of isolating biological target materials using silica magnetic particles. Other patents are pending.

(b)U.S. Pat. No. 6,284,470 has been issued to Promega Corporation for kits for cell concentration and lysate clearance using paramagnetic particles. Other patents are pending.

© 2002, 2003 Promega Corporation. All Rights Reserved.

MagnaBot, MagneSil and Wizard are trademarks of Promega Corporation and are registered with the U.S. Patent and Trademark Office.

Biomek is a registered trademark of Beckman Instruments, Inc. BioWorks is a trademark of Beckman Coulter, Inc. Genesis is a registered trademark of Tecan AG Corporation. IBM is a registered trademark of International Business Machines Corporation. MicroMix is a registered trademark of Clintec Nutrition Co.

All prices and specifications are subject to change without prior notice.

Product claims are subject to change. Please contact Promega Technical Services or access the Promega online catalog for the most up-to-date information on Promega products.

Promega Corporation			
2800 Woods Ho	llow Road		
Madison, WI 53	711-5399 US <i>F</i>		
Telephone	608-274-4330		
Fax	608-277-2516		
Internet	www.promega.com		
ISO 9001 Regist	ered		