ReliaPrep™ RNA Tissue Miniprep System

Instructions for Use of Products Z6110, Z6111 and Z6112

> Revised 2/16 TM394

ReliaPrep™ RNA Tissue Miniprep System

All technical literature is available at: www.promega.com/protocols/ Visit the web site to verify that you are using the most current version of this Technical Manual. E-mail Promega Technical Services if you have questions on use of this system: techserv@promega.com

1.	Description	1
	Product Components and Storage Conditions	
	General Considerations	4
	3.A. Direct Purification of RNA	
	3.C. Creating a Ribonuclease-Free Environment	
4.	RNA Isolation and Purification Procedure 4.A. Preparation of Solutions	
	4.B. Purification of RNA from Non-Fibrous Tissue 4.C. Purification of RNA from Fibrous Tissues	8
5.	Determination of RNA Yield and Quality	
6.	Troubleshooting	14
7.	References	17
8.	Appendix	
	8.A. Composition of Buffers and Solutions	17
	8.B. Related Products	18
	8.C. Summary of Change	18

1. Description

The purity and integrity of RNA isolated from animal tissues are critical for its effective use in applications such as reverse transcription PCR (RT-PCR), reverse transcription quantitative PCR (RT-qPCR), RNase protection assays, Northern blot analysis, oligo(dT) selection of poly(A)+ RNA, in vitro translation, microarray analysis and sequencing. In recent years, RT-PCR and RT-qPCR have emerged as powerful methods to identify and quantitate specific mRNAs from small amounts of total RNA and mRNA. As the use of amplification as a research tool has grown, the need for methods to isolate high-quality RNA from small amounts of starting material (i.e., animal tissue), substantially free of genomic DNA contamination, has increased. The ReliaPrepTM RNA Tissue Miniprep System has been designed to address these needs.

The ReliaPrep™ RNA Tissue Miniprep System provides a fast and simple technique for preparing purified and intact total RNA from animal tissue in as little as 30 minutes, depending on the number of samples to be processed. The system also incorporates a DNase treatment step that is designed to substantially reduce genomic DNA contamination, which can interfere with amplification-based methodologies. Purification is achieved without the use of phenol:chloroform extractions or ethanol precipitations.

2. Product Components and Storage Conditions

PRODUCT	SIZE	CAT.#
ReliaPrep™ RNA Tissue Miniprep System	250 preps	Z6112

For in vitro Research Use Only. Each system contains sufficient reagents for 250 preparations of total RNA from animal tissue. Includes:

- 5 packs ReliaPrep[™] Minicolumns (50/pack)
- 2 packs Collection Tubes (250/pack)
- 5 packs Elution Tubes (50/pack)
- 150ml LBA Buffer (LBA)
- 24ml Column Wash Solution (CWE)
- 3 vials DNase I (lyophilized)
- 2 × 750µl MnCl₂, 0.09M
- 11ml Yellow Core Buffer
- 206ml RNA Wash Solution (RWA)
- 4 × 900µl 1-Thioglycerol
- 13ml Nuclease-Free Water
- 220ml RNA Dilution Buffer (RDB)

PRODUCT SIZE CAT.#

50 preps

Z6111

ReliaPrep™ RNA Tissue Miniprep System

For in vitro Research Use Only. Each system contains sufficient reagents for 50 preparations of total RNA from animal tissue. Includes:

- 1 pack ReliaPrep™ Minicolumns (50/pack)
- 2 packs Collection Tubes (50/pack)
- 1 pack Elution Tubes (50/pack)
- 30ml LBA Buffer (LBA)
- 5ml Column Wash Solution (CWE)
- 1 vial DNase I (lyophilized)
- 250μl MnCl₂, 0.09M
- 2.5ml Yellow Core Buffer
- 35ml RNA Wash Solution (RWA)
- 2 ×900µl 1-Thioglycerol

2

- 13ml Nuclease-Free Water
- 44ml RNA Dilution Buffer (RDB)

PRODUCT SIZE CAT.#

ReliaPrep™ RNA Tissue Miniprep System

10 preps

Z6110

For in vitro Research Use Only. Each system contains sufficient reagents for 10 preparations of total RNA from animal tissues. Includes:

- 1 pack ReliaPrep™ Minicolumns (10/pack)
- 2 packs Collection Tubes (10/pack)
- 1 pack Elution Tubes (25/pack)
- 6ml LBA Buffer (LBA)
- 1ml Column Wash Solution (CWE)
- 1 vial DNase I (lyophilized)
- 250μl MnCl₂, 0.09M
- 300µl Yellow Core Buffer
- 11.8ml RNA Wash Solution (RWA)
- $2 \times 75\mu l$ 1-Thioglycerol
- 1.25ml Nuclease-Free Water
- 9ml RNA Dilution Buffer (RDB)

Note: The Yellow Core Buffer is colored yellow to allow users to see whether the membrane is completely covered by the DNase mixture in the DNase step. The dye has no effect on the quality or downstream performance of the RNA.

Storage Conditions: Upon receipt, remove and store the 1-Thioglycerol at $2-10^{\circ}$ C. Store the LBA Buffer, with 1-Thioglycerol added, at $2-10^{\circ}$ C for up to 30 days. Cap tightly between uses. For information on rehydration of DNase I see Section 4.A, Preparation of Solutions. Store all other components at $15-30^{\circ}$ C.

- **Do not** combine or replace components of the ReliaPrep™ RNA Tissue Miniprep System with components from any Wizard® *Plus* or Wizard® *Plus* SV DNA Purification System.
- Caution: Guanidine thiocyanate and guanidine hydrochloride (components of LBA Buffer and Column Wash Solution (CWE) are harmful and irritants. 1-Thioglycerol is toxic. Wear gloves and follow standard safety procedures while working with these solutions. When processing human tissues, follow standard procedures for handling and disposal of hazardous materials.

3. General Considerations

3.A. Direct Purification of RNA

The successful isolation of intact RNA requires four essential steps:

- effective disruption of tissue,
- · denaturation of nucleoprotein complexes,
- · inactivation of endogenous ribonuclease (RNase) activity, and
- removal of contaminating DNA and proteins.

The most important step is the immediate inactivation of endogenous RNases that are released from membrane-bound organelles upon cell disruption (1).

The ReliaPrep™ RNA Tissue Miniprep System combines the disruptive and protective properties of guanidine thiocyanate (GTC) and 1-Thioglycerol to inactivate the ribonucleases present in tissue homogenates. GTC disrupts nucleoprotein complexes, allowing the RNA to be released into solution and isolated free of protein. Nucleic acids in lysates are bound to the ReliaPrep™ Minicolumns by centrifugation. The binding reaction occurs rapidly due to the disruption of water molecules by the chaotropic salts, thus favoring adsorption of nucleic acids to the column. RNasefree DNase I is applied directly to the membrane to digest contaminating genomic DNA. The bound total RNA is further purified from contaminating salts, proteins and cellular components by simple washing steps. Finally, the total RNA is eluted from the membrane by the addition of Nuclease-Free Water. This procedure yields an essentially pure fraction of total RNA after only a single round of purification without organic extractions or precipitations. The procedure is easy to perform with small quantities of animal tissues, and it can be used to process multiple samples.

Processing Capacity

The ReliaPrepTM RNA Tissue Miniprep System was developed and optimized for total RNA isolation from a wide range of input tissue mass, 0.25 to 20mg, with a broad spectrum of RNA expression levels.

3.B. Downstream Applications

RNA purified with the ReliaPrep™ RNA Tissue Miniprep System is suitable for many molecular biology applications, including RT-PCR, microarrays and Northern blot hybridizations.

For all downstream applications, continue to protect your samples from RNases by wearing gloves and using solutions and centrifuge tubes that are RNase-free. The use of a ribonuclease inhibitor such as Recombinant RNasin® Ribonuclease Inhibitor (Cat.# N2511) can help ensure protection from nucleases that may be introduced into purified RNA during downstream processing.

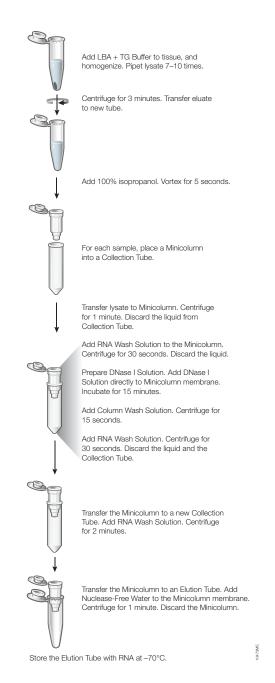


Figure 1. Schematic diagram of the ReliaPrep $^{\text{TM}}$ RNA Tissue Miniprep System. For protocol details see Section 4.

3.C. Creating a Ribonuclease-Free Environment

Ribonucleases are extremely difficult to inactivate (1). Take care to avoid inadvertently introducing RNase activity into your RNA during or after the isolation procedure. This is especially important if the starting material has been difficult to obtain or is irreplaceable. The following notes may help you to prevent accidental RNase contamination of your sample.

- 1. Two of the most common sources of RNase contamination are the user's hands and bacteria or molds that may be present on airborne dust particles (1). To prevent contamination from these sources, use sterile technique when handling the reagents supplied with the kit. Wear gloves at all times.
- Whenever possible, sterile disposable plasticware should be used for handling RNA. These materials are generally RNase-free and thus do not require pretreatment to inactivate RNase. Autoclaved Elution Tubes are provided with the system.

4. RNA Isolation and Purification Procedure

For best results from this system, use fresh tissue samples. If you choose to store harvested tissues, it is best to flash freeze the pellets in liquid nitrogen, then store at -70° C. RNA integrity depends on the rapid freezing of tissue and direct thawing into LBA + TG Buffer to ensure rapid lysis and inactivation of nucleases in the sample. After lysis in LBA + TG Buffer samples may be stored at -20° C to -70° C for up to three months. Due to the toxicity of the chemicals used in the RNA purification procedure and the prevalence of RNases, wear gloves throughout the lysis and purification procedure.

Note: Two protocols are provided below. The first (Section 4.B) addresses non-fibrous tissues (e.g., liver, spleen, brain). The second protocol (Section 4.C) is for use with fibrous tissues (e.g., lung, heart) and requires additional purification steps to yield best results.

Materials to Be Supplied by the User

(Solution compositions are provided in Section 8.A.)

- 100% isopropanol, RNase-free
- 95% ethanol, RNase-free
- microcentrifuge

4.A. Preparation of Solutions

Before beginning the ReliaPrep™ RNA Tissue Miniprep System protocol, four solutions must be prepared.

Note: Throughout this document, LBA Buffer, RNA Wash Solution (RWA) and Column Wash Solution (CWE) refer to the solutions supplied with the ReliaPrep™ RNA Tissue Miniprep System. Once prepared as described below, these solutions are referred to as LBA + TG Buffer, RNA Wash Solution and Column Wash Solution.

Solution	Preparation Steps	Notes
DNase I	250 prep size (Cat.# Z6112): Add 275μl of Nuclease-Free Water (provided) as indicated on the vial label or 50 prep size (Cat.# Z6111): Add 275μl of Nuclease-Free Water (provided) as indicated on the vial label or	Gently mix by swirling the vial of solution. Do not vortex. We recommend dispensing the rehydrated DNase into working aliquots (e.g., into 5–10 equal aliquots) using sterile RNase-free microcentrifuge tubes. A total of 3μl of rehydrated DNase I is required per RNA purification. Store rehydrated DNase I at –20°C.
	10 prep size (Cat.# Z6110): Add 80µl of Nuclease-Free Water (provided) as indicated	Do not vortex the DNase I solution.
	on the vial label.	Do not freeze-thaw aliquots of rehydrated DNase I more than three times.
LBA + TG Buffer	250 prep size (Cat.# Z6112): Add 3,000μl of 1-Thioglycerol to 150ml of LBA Buffer or 50 prep size (Cat.# Z6111): Add 600μl of 1-Thioglycerol to 30ml of LBA Buffer or 10 prep size (Cat.# Z6110): Add 120μl of 1-Thioglycerol to the bottle containing 6ml of LBA Buffer.	After adding 1-Thioglycerol (TG), mark on the bottle that you have performed this step. Store the LBA + TG Buffer at 2°C-10°C for up to 30 days. Cap tightly between uses.
RNA Wash Solution	250 prep size (Cat.# Z6112): Add 350ml of 95% ethanol to the bottle containing 206ml of concentrated RNA Wash Solution (RWA) or 50 prep size (Cat.# Z6111): Add 60ml of 95% ethanol to the bottle containing 35ml of concentrated RNA Wash Solution (RWA) or 10 prep size (Cat.# Z6110): Add 20ml of 95% ethanol to the bottle containing 11.8ml of concentrated RNA Wash Solution (RWA).	After adding ethanol to RNA Wash Solution (RWA), mark on the bottle label that this step has been performed. The reagent is stable at +15°C to +30°C when tightly capped.

4.A. Preparation of Solutions (continued)

Solution	Preparation Steps	Notes
Column Wash Solution	250 prep size (Cat.# Z6112): Add 36ml of 95% ethanol to the bottle containing 24ml of concentrated Column Wash Solution (CWE) or 50 prep size (Cat.# Z6111): Add 7.5ml of 95% ethanol to the bottle containing 5ml of concentrated Column Wash Solution (CWE) or 10 prep size (Cat.# Z6110): Add 1.5ml of 95% ethanol to the bottle containing 1ml of concentrated Column Wash Solution (CWE).	After adding ethanol to the Column Wash Solution (CWE), mark on the bottle label that this step has been performed. The reagent is stable at +15°C to +30°C when tightly capped.

4.B. Purification of RNA from Non-Fibrous Tissue

Use the following protocol to lyse tissue samples. Use 0.25–20mg of tissue per purification.

 Verify that 1-Thioglycerol has been added to the LBA Buffer. Add LBA + TG Buffer to the tissue sample in accordance with Table 1 below.

Table 1. Recommended Amounts of Tissue and Solutions for Lysis.

Tissue Input Range	LBA + TG Buffer	100% Isopropanol
≤5mg	250µl	85µl
>5mg (maximum 20mg)	500µl	170μΙ

2. Up to 20mg of tissue will lyse easily in combination with disruption with a tissue homogenizer.

Note: The lysis should be followed by pipetting 7–10 times to shear the DNA using a P200 or P1000 pipettor. Clear homogenates by centrifugation for 3 minutes at $14,000 \times q$, then transfer to a clean tube.

The maximum volume of lysate that can be efficiently processed is $500\mu l$ per column. If a lysate contains more RNA than the capacity of the column allows, some RNA will be lost during the wash steps.

- 3. Add isopropanol as recommended in Table 1. Mix by vortexing for 5 seconds.
- 4. Wear clean gloves and open the packs of tubes and Minicolumns carefully. Remove one ReliaPrep™ Minicolumn, two Collection Tubes and one Elution Tube for each sample to be processed. Place the Collection Tubes in a microcentrifuge tube rack, and place the ReliaPrep™ Minicolumn into a Collection Tube. It is important to label all your tubes and minicolumns to maintain sample identity. Always wear gloves when handling the tubes and minicolumns.
- 5. Transfer the lysate to a ReliaPrepTM Minicolumn and centrifuge at $12,000-14,000 \times g$ for 1 minute at 20-25°C. If the lysate does not completely clear the column, repeat the centrifugation for an additional 1 minute.
- 6. Remove the ReliaPrep™ Minicolumn and **discard the liquid in the Collection Tube**. Place the ReliaPrep™ Minicolumn back into the Collection Tube. Verify that the RNA Wash Solution has been diluted with ethanol as

described in Section 4.A. Add 500µl of RNA Wash Solution to the ReliaPrep™ Minicolumn. Centrifuge at $12.000-14.000 \times a$ for 30 seconds.

Empty the Collection Tube as before and place it in the microcentrifuge rack. In a sterile tube, prepare the DNase 7. I incubation mix by combining (in this order) the following amount of each reagent per sample:

24ul of Yellow Core Buffer

3µl 0.09M MnCl

3µl of DNase I enzyme.

Mix by gentle pipetting; do not vortex. Prepare only the amount of DNase I incubation mix needed. Store the DNase I mix on ice while it is thawed. Apply 30µl of this freshly prepared DNase I incubation mix directly to the membrane inside the column. Make sure that the solution is in direct contact with and thoroughly covering the membrane. The incubation solution is yellow to make this easier to see.

- Note: Do not mix the Yellow Core Buffer and 0.09M MnCl, prior to Step 7. The Yellow Core Buffer and 0.09M MnCl., should be stored separately and mixed immediately prior to each set of RNA preparations.
- Incubate for 15 minutes at room temperature (+20°C to +25°C). After this incubation, add 200µl of 8. Column Wash Solution (as prepared in Section 4.A; verify that ethanol has been added) to the ReliaPrep™ Minicolumn. Centrifuge at $12,000-14,000 \times q$ for 15 seconds. There is no need to empty the Collection Tube before the next step.
- 9. Add 500 μ l of RNA Wash Solution (with ethanol added) and centrifuge at 12,000–14,000 × g for **30 seconds.** Empty wash solutions and discard the Collection Tube.
- 10. Place the ReliaPrep™ Minicolumn into a new Collection Tube. Add 300µl of RNA Wash Solution (with ethanol added). Centrifuge at high speed for 2 minutes.
- For each sample, remove one capped 1.5ml Elution Tube. Transfer the ReliaPrep™ Minicolumn from the 11. Collection Tube to the Elution Tube, and add Nuclease-Free Water to the membrane according to the elution volume listed in Table 2. Be sure to completely cover the surface of the membrane with the water. Place the ReliaPrep™ Minicolumn in the centrifuge with the lids of the Elution Tubes facing out. Centrifuge at $12,000-14,000 \times q$ for 1 minute. Remove the column and discard. Cap the Elution Tube containing the purified RNA and store at -70°C.

Table 2. Recommended RNA Elution Volumes per Mass of Tissue.

Tissue Input Range	Nuclease-Free Water
5mg or less	15μl
>5mg	30µl

Note: If more concentrated RNA is required, the elution volume can be decreased. While the concentration of the RNA may increase, the total yield of RNA obtained may decrease, especially when elution volumes of less than 10µl are used. Elution volumes below 7µl are not recommended. Alternatively, RNA can be concentrated by vacuum-drying and resuspending in a smaller volume of water. If expected yields of >30µg of RNA are essential, a second elution into a second sterile tube with an additional 15ul of Nuclease-Free Water followed by centrifugation at $12,000-14,000 \times g$ for 1 minute is recommended. Depending on the tissue mass and RNA expression levels, a second elution may yield as much as 30-40% of additional RNA.

4.C. Purification of RNA from Fibrous Tissues

Use the following protocol to process fibrous tissues. Use 0.25–20mg of tissue per purification.

1. Verify that 1-Thioglycerol has been added to the LBA buffer. Add LBA + TG Buffer to the tissue sample in accordance with Table 3 below.

Table 3. Recommended Amounts of Tissue and Solutions for Lysis.

		RDB Addition	Total Volume	100%
Tissue Input Range	LBA + TG Buffer	(µl)	(µl)	Isopropanol
≤5mg	250μl	250µl	500μl	170μl
>5mg (maximum 20mg)	500μl	500µl	1,000μl	340µl

Note: Up to 20mg of tissue will lyse easily in LBA + TG in combination with the use of a tissue homogenizer. The lysis should be followed by pipetting 7-10 times to shear the DNA using a P200 or P1000 pipettor.

- 2. Add an equal volume of RNA Dilution Buffer (RDB) and mix by vortexing for 10 seconds. Incubate 1 minute at room temperature. A visible precipitate may appear. Clear homogenates by centrifugation at room temperature for 3 minutes at $10,000 \times g$ to pellet insoluble debris. Transfer the cleared lysates to clean tubes, taking care to avoid any pelleted debris.
 - The maximum volume of lysate that can be efficiently processed is 500µl per column. If a lysate contains more RNA than the capacity of the column (approximately 80–85µg), some RNA may be lost during the wash steps.
- 3. Add isopropanol as recommended in Table 3.
- 4. Wear clean gloves and open the packs of tubes and minicolumns carefully. Remove one ReliaPrep™ Minicolumn, two Collection Tubes and one Elution Tube for each sample to be processed. Place the Collection Tubes in a microcentrifuge tube rack, and place the ReliaPrep™ Minicolumn into a Collection Tube. Be sure to label all your tubes and minicolumns to maintain sample identity. Always wear gloves when handling the tubes and minicolumns.
- 5. Transfer up to 700μl of lysate to a ReliaPrep™ Minicolumn and centrifuge at 12,000−14,000 × g for 1 minute at 20−25°C. If your original homogenate LBA + TG volume was 500μl, a second load step will be required. Remove the ReliaPrep™ Minicolumn and discard the liquid in the Collection Tube. Place the ReliaPrep™ Minicolumn back into the Collection tube. Repeat the centrifugation step.
- 6. Remove the ReliaPrep™ Minicolumn, and discard the liquid in the Collection Tube. Place the ReliaPrep™ Minicolumn back into the Collection Tube. Verify that the RNA Wash Solution has been diluted with ethanol as described in Section 4.A. Add 500µl of RNA Wash Solution to the ReliaPrep™ Minicolumn. Centrifuge at 12,000−14,000 × g for 30 seconds.

7. Empty the Collection Tube as before and place it in the microcentrifuge rack. In a sterile tube, prepare the DNase I incubation mix by combining (in this order) the following amount of each reagent per sample:

24µl of Yellow Core Buffer

3µl 0.09M MnCl₂

3μl of DNase I enzyme.

Mix by gentle pipetting; do not vortex. Prepare only the amount of DNase I incubation mix needed. Store the DNase I mix on ice while it is thawed. Apply $30\mu l$ of this freshly prepared DNase I incubation mix directly to the membrane inside the column. Make sure that the solution is in direct contact with and thoroughly covering the membrane. The incubation solution is yellow to make this easier to see.

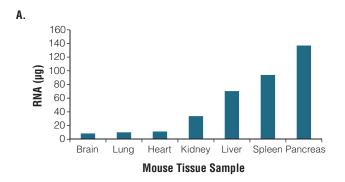
Note: Do not mix the Yellow Core Buffer and 0.09M MnCl₂ prior to Step 9. The Yellow Core Buffer and 0.09M MnCl₂ should be stored separately and mixed immediately prior to each set of RNA preparations.

- 8. **Incubate for 15 minutes at room temperature** (+20 to +25°C). After this incubation, **add 200μl of Column Wash Solution** (as prepared in Section 4.A; verify that ethanol has been added) to the ReliaPrep™ Minicolumn. **Centrifuge at 12,000−14,000** × **g for 15 seconds**. There is no need to empty the Collection Tube before the next step.
- 9. Add 500 μ l of RNA Wash Solution (with ethanol added) and centrifuge at 12,000–14,000 × g for 30 seconds. Empty wash solutions and discard the Collection Tube.
- 10. Place the ReliaPrep™ Minicolumn into a new Collection Tube. Add 300µl of RNA Wash Solution (with ethanol added). Centrifuge at high speed for 2 minutes.
- 11. For each sample, remove one capped 1.5ml Elution Tube. Transfer the ReliaPrep™ Minicolumn from the Collection Tube to the Elution Tube, and add Nuclease-Free Water to the membrane according to the elution volume listed in Table 4. Be sure to completely cover the surface of the membrane with the water. Place the ReliaPrep™ Minicolumn in the centrifuge with the lids of the Elution Tubes facing out. Centrifuge at 12,000-14,000 × g for 1 minute. Remove the column and discard. Cap the Elution Tube containing the purified RNA and store at -70°C.

Table 4. Recommended RNA Elution Volumes per Mass of Tissue.

Tissue Input Range	Nuclease-Free Water
>5mg	15µl
>5 to 20mg	30μl

Note: If more concentrated RNA is required, the elution volume can be decreased. While the concentration of the RNA may increase, the total yield of RNA obtained may decrease, especially when elution volumes of less than 10μ l are used. Elution volumes below 7μ l are not recommended. Alternatively, RNA can be concentrated by vacuum-drying and resuspending in a smaller volume of water. If expected yields of >30 μ g of RNA are essential, a second elution into a second sterile tube with an additional 15μ l of Nuclease-Free Water followed by centrifugation at $12,000-14,000 \times g$ for 1 minute is recommended. Depending on the tissue mass and RNA expression levels, a second elution may yield as much as 30-40% of additional RNA.


5. **Determination of RNA Yield and Quality**

Yield and Purity

The ReliaPrep™ RNA Tissue Miniprep System can be used to isolate intact RNA from a variety of tissue sources. The yield of total RNA obtained may be determined spectrophotometrically at 260nm, where 1 absorbance unit (A_{260}) equals 40µg of single-stranded RNA/ml. The purity also may be estimated by spectrophotometry from the relative absorbances at 230, 260 and 280nm (i.e., A_{260}/A_{280} and A_{260}/A_{230}). If the mass of tissue estimated as starting material is less than 0.5 mg, spectrophotometric analysis will not yield accurate results due to the lack of sensitivity of this method for low concentrations of nucleic acid. Alternatively, RNA yields from cell inputs as low as 0.25mg can be determined using the QuantiFluor® RNA System (Cat.# E3310).

RNA isolated with the ReliaPrep™ RNA Tissue Miniprep System is substantially free of DNA and contaminating protein and may be used directly for any of the applications listed in Section 3.B. Pure RNA will exhibit an A₂₆₀/A₂₈₀ ratio of 2.0. However, it should be noted that, due to the variations between individual starting materials and in performing the procedure, the expected range of A_{260}/A_{280} ratios for RNA will be 1.7–2.1. If the RNA ratio is less than 1.7, refer to Section 6 for possible causes and suggestions on improving the purity of the RNA. Using this protocol, the RNA will usually exhibit an A_{260}/A_{230} ratio of 1.8–2.2. A low A_{260}/A_{230} ratio may indicate guanidine contamination that can interfere with downstream processing. If sufficient quantities of RNA are available, determine the integrity of the purified RNA by denaturing agarose gel electrophoresis. Several methods are suitable for this purpose using either formaldehyde (2,3) or glyoxal (4) as the denaturing agent. The ratio of 28S to 18S eukaryotic ribosomal RNAs should be approximately 2:1 by ethidium bromide staining, indicating that no gross degradation of RNA has occurred. In RNA samples that have been degraded, this ratio will be reversed since the 28S ribosomal RNA characteristically is degraded to an 18S-like species. Refer to Sections 3 and 6 for suggestions on avoiding RNA degradation.

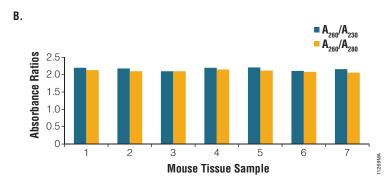


Figure 2. Average yield and typical purity of RNA isolated from 10mg mouse tissue samples using the ReliaPrep™ Tissue Miniprep System. RNA from ten milligrams of various mouse tissues, fibrous and non-fibrous, was purified using the appropriate protocols, with 3 replicates processed per tissue type. Panel A. RNA yield was calculated by spectrophotometric analysis where 1 O.D. 260 equals 40µg/ml RNA. Panel B. Purity was determined by analysis of $A_{260}/_{280}$ and $A_{260}/_{230}$ ratios indicative of the lack of protein contamination and guanidine contamination respectively. In both cases, a ratio greater than 1.8 is indicative of high purity RNA.

6. **Troubleshooting**

Symptoms	Possible Causes and Comments
${\rm LowA_{260}/A_{280}ratios}$	When processing small amounts of tissue, the expected yield of RNA may be below the level of detection; spectroscopic methods may not be accurate when expected yields of RNA drop below approximately 15ng/µl. As the signal approaches the limit of detection for the instrument, background noise may lead to inaccurate readings.
	Low $\rm A_{260}/A_{280}$ ratios are typically due to protein contamination. Several methods may be used for removing contaminating protein from RNA solutions. The most expedient method is to perform a phenol:chloroform extraction. This organic extraction should yield higher $\rm A_{260}/A_{280}$ ratios. However, loss of RNA (up to 40%) should be expected.
${\rm LowA_{260}/A_{230}ratios}$	When processing small amount of tissue, the expected yield of RNA may be below the level of detection; spectroscopic methods may not be accurate when expected yields of RNA drop below approximately $15 \text{ng}/\mu \text{l}$. As the signal approaches the limit of detection for the instrument, background noise may lead to inaccurate readings.
	Low A_{260}/A_{230} ratios are typically due to guanidine thiocyanate contamination. Precipitate the RNA by adding NaCl to a final concentration of 0.1M. Add 2.5 volumes of ethanol. Incubate for 30 minutes at -20° C. Collect the RNA by centrifugation at $10,000 \times g$ for 15 minutes at 4°C. Resuspend the RNA in Nuclease-Free Water. When processing small samples, further concentration of the RNA may be challenging as precipitation of dilute samples may be inefficient.
Low A ₂₆₀ (low RNA yield)	Tissue lysates that have been stored frozen (at $-20 \text{ or } -70^{\circ}\text{C}$) may have decreased amounts of total RNA. For optimal performance, purify the RNA as soon as the lysate is prepared.
	RNA yield is below the level of detection for spectroscopic quantitation methods. When processing small amounts of tissue, the expected yield of RNA may be below the level of detection. Spectroscopic methods may not be accurate when expected yields of RNA drop below approximately 15ng/µl. Accurate quantitation may be possible only with fluorescent dye-based methods or by qPCR.

Symptoms	Possible Causes and Comments
${\rm Low} {\rm A}_{260} ({\rm low} {\rm RNA} {\rm yield}) ({\rm continued})$	Sample RNA may be of poor quality. Samples that were not lysed or frozen immediately upon isolation may have decreased amounts of RNA with reduced integrity. Freeze tissue immediately in liquid nitrogen and store at -70° C if it cannot be processed immediately. Samples in LBA + TG Buffer should be stored at -20° C to -70° C.
	The binding capacity of the membrane in the minicolumn was exceeded. If the lysate contains more RNA than the capacity of the minicolumn, the excess RNA will be washed away during the wash steps. When maximum recovery is essential, divide the lysate and perform multiple purifications. Pool the resulting RNA solutions, and determine the total yield obtained.
	The ReliaPrep™ RNA Tissue Miniprep System uses a multiple- step procedure that requires the correct reagents to be used in the correct order. This ensures that the RNA remains bound to the membrane during the purification process.
	Ethanol may not have been added to the Column Wash Solution or to the RNA Wash Solution. Prepare solutions as instructed in Section 4. A before beginning the procedure.
	Lysate was allowed to overheat during processing. Work as quickly as possible. Lysates can be placed on ice during sample preparation. Use ice-cold LBA + TG Buffer for lysis to improve yield and stability if overheating is a problem.
Genomic DNA contamination seen when performing PCR	Reaction may contain too much sample. Reduce total RNA input to 50–100ng in control PCR. Generally, the RNA-specific product is seen from a rare message in RT-PCR using 50ng total RNA.
	When the suggested input amounts are used in the system, most purified RNA samples do not show genomic DNA contamination in RT-PCR. If DNA contamination is a problem in a sample, we recommend performing a post-RNA isolation DNase treatment using RQ1 RNase Free DNase (Cat.# M6101) followed by phenol: chloroform extraction. For more information, see reference 3.

6. **Troubleshooting (continued)**

Symptoms	Possible Causes and Comments
Genomic DNA contamination	The DNase I enzyme may be inactive. Resuspend and store the lyophilized DNase according to the directions in Section 4.A. Do not freeze-thaw the DNase more than three times after it has been rehydrated.
	MnCl ₂ or DNase I was not added to the Yellow Core Buffer. For each isolation to be performed, prepare the DNase incubation mix by combining 24µl of Yellow Core Buffer , 3µl of 0.09M MnCl ₂ and 3µl of DNase I enzyme in a sterile tube just before use. Prepare the DNase incubation mix fresh for each set of RNA isolations. Do not vortex.
	The DNase I Solution is not in full contact with the membrane during digestion. Visually inspect to ensure that the DNase I solution completely covers the membranes during the DNA digestion. The solution is yellow to make this easier.
	The DNase step was omitted or not performed correctly. The DNase step should be performed to eliminate the possibility of host DNA contaminating the system.
Clogged Binding Columns	The lysate is too concentrated. If the lysate is difficult to pipet, the cell lysate is too concentrated. RNA concentration will vary between cell lines. If the lysate is too viscous, dilute it with LBA + TG Buffer before adding RNA Wash Buffer. Use no more than 500µl of lysate per column.
Lysate too viscous; does not pipet easily	The initial lysate is too viscous. Dilute the lysate with LBA + TG Buffer.
	Lysate becomes too viscous while sitting on ice. Briefly mix by drawing up through a 20-gauge needle to shear genomic DNA.
RNA degradation	RNase was introduced during handling. Use DEPC-treated glassware and solutions and disposable plasticware when manipulating and storing RNA. Wear gloves at all times. RNases introduced after elution will degrade RNA.
	RNA was degraded during sample prep. Work quickly during sample preparation (see comments under "Low A_{260} ").

References 7.

- 1. Chirgwin, J.M. et al. (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294-9.
- 2. Lehrach, H. et al. (1977) RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical re-examination. *Biochemistry* **16**, 4743–51.
- 3. Ausubel, F.M. et al. eds. (1993) In: Current Protocols in Molecular Biology. Greene Publishing Associates and John Wiley and Sons, New York, NY.
- 4. McMaster, G.K. and Carmichael, G.G. (1977) Analysis of single- and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc. Natl. Acad. Sci. USA 74, 4835–8.

8. **Appendix**

8.A. Composition of Buffers and Solutions

RNA Wash Solution (RWA) (concentrated)

162.8mM potassium acetate 27.1mM Tris-HCl (pH 7.5 at 25°C)

After dilution with ethanol the final concentration (approximate) is 60mM potassium acetate, 10mM Tris-HCl (pH 7.5 at 25°C) and 60% ethanol.

Yellow Core Buffer

0.0225M Tris (pH 7.5) 1.125M NaCl 0.0025% yellow dye (w/v)

8.B. Related Products

Total RNA Isolation from FFPE Samples

Product	Size	Cat.#
ReliaPrep™ FFPE Total RNA Miniprep System RNA Isolation from Cells Product ReliaPrep™ RNA Cell Miniprep System Total RNA Isolation Systems Product SV 96 Total RNA Isolation System MagneSil® Total RNA mini-Isolation System PureYield™ RNA Midiprep System	10 reactions	Z1001
	100 reactions	Z1002
RNA Isolation from Cells		
Product	Size	Cat.#
ReliaPrep™ RNA Cell Miniprep System	250 preps	Z6012
	50 preps	Z6011
	10 preps	Z6010
Total RNA Isolation Systems		
Product	Size	Cat.#
SV 96 Total RNA Isolation System	1 × 96 each	Z3500
	5 × 96 each	Z3505
MagnaSil® Total DNA mini-Isolation System	4.7.	=
Magnesh Total KNA mini-isolation system	4 plates	Z3351
	4 plates 10 preps	
		Z3740
	10 preps	Z3740
PureYield™ RNA Midiprep System	10 preps	Z3740 Z3741
PureYield™ RNA Midiprep System mRNA Isolation from Total RNA	10 preps 50 preps	Z3351 Z3740 Z3741 Cat.# Z5210

8.C. Summary of Change

PolyATtract® mRNA Isolation System III

PolyATtract® mRNA Isolation System IV

The following change was made to the 2/16 revision of this document:

Updated Section 8.A.

15 isolations

15 isolations

Z5300

Z5310

© 2013–2016 Promega Corporation. All Rights Reserved.

MagneSil, PolyATtract, QuantiFluor, RNasin and Wizard are registered trademarks of Promega Corporation. PureYield and ReliaPrep are trademarks of Promega Corporation.

Tissue-Tearor is a trademark of BioSpec Products, Inc.

Products may be covered by pending or issued patents or may have certain limitations. Please visit our Web site for more information.

All prices and specifications are subject to change without prior notice.

Product claims are subject to change. Please contact Promega Technical Services or access the Promega online catalog for the most up-to-date information on Promega products.